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Fourier transform methods initiated by Geller and Harris are applied to the calculation of optical
properties of molecules. Tables of one-electron two-center integrals needed for the accurate computation
of molecular absorption and optical activity are calculated by the Fourier transform method. A general
theorem is derived which allows the angular part of the integrals to be treated by means of projection
operators. The radial parts of the integrals ate treated by the methods of Harris. The results are obtained
in a simple closed form which avoids the usual transformation to local coordinates. The two-center
integrals evaluated include matrix elements of the momentum operator, the dipole moment operator,

0
the tensor operator x“a—, the quadrupole moment operator, and the angular momentum operator.
xV

These are evaluated between Ls, 2s, and 2p Slater-type atomic orbitals located on different atoms.
The results are expressed as functions of the Slater exponents and of the relative coordinates of the
two atoms.

Key words: Two-center one-electron integrals — Fourier transforms in MO theory — Optical
properties

Introduction

In order to calculate the optical properties of molecules (including oscillator
strengths, linear dichroism, circular dichroism, optical rotatory dispersion and
photon scattering cross sections), from a knowledge of the molecular orbitals [1—6],
one needs to evaluate matrix elements of the form:

(M), =[x P(x) &% * D(x) v=1,2,3. (1)

ox,

Here » is the photon wave number, while ¢, and &, are molecular orbitals. If we
let X; represent the position of the jth atom in a molecule, while y,(x —X,) re-
presents an atomic orbital of type n localized in the jth atom, then the molecular
orbitals can be written in the form:

d')s(x) = Z Xn(x - X]) an,s . (2)

n,j
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If we expand exp(ix - x) in a Taylor series, retaining only the first two terms,
then (1) and (2) can be combined to yield:

(M, ), =[x, e+ )

= 3 CuraCu {(1 T in- X;) {FunlRy b, 3)
+1 3 TRy
where
{FyuR; b= d3xxn/(x—xf>5i—vx,,(x—xj) @
and
(TR = § = X)) (6 = X)) -2 15— X)), 5)

ax,

For the evaluation of oscillator strengths, only the term

fim (M, )1} = d*x,0 - 0,60 ©

is necessary, while the terms up to first order in » are needed for the calculation
of circular dichroism and optical rotatory dispersion. The matrix element of the
momentum operator (6), is often converted into a matrix element of the dipole
moment operator by means of the relation:

0 m(E,— E

Jaox ) )= o
However, as has been pointed out by a number of authors [7-21], who have
concerned themselves with matrix elements of the form (4)—(6), Eq. (7) is only
an exact relation if we are dealing with exact solutions of the Schrddinger equation.
In cases where the wave functions are only approximate, the use of (7) can lead
to very large errors. Therefore it is of interest to evaluate matrix elements of the
momentum operator (6) directly without converting it to the dipole moment by
means of (7). The authors who have evaluated (6) directly do so by using an
ellipsoidal coordinate system [22-23]. The ellipsoidal coordinate method for
evaluating two-center one-electron integrals is rather cumbersome, and it is
necessary, when using this method, to transform to a local coordinate system
oriented along the line joining the two atoms. We shall instead evaluate the matrix
elements by means of the Fourier transform methods pioneered by Geller and
Harris, making use of the radial integrals studied by them. The Fourier transform
method leads to a simple analytic evaluation of all the two-center one-electron
integrals. Besides the simple closed form of the results, the Fourier transform
method for calculating optical properties of molecules has the great advantage
that it avoids the transformation to local coordinates.

[&x y(x) x, D,(x). 7
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The Fourier Transform Method for Calculating Two-Center One-Electron Integrals

Let (k) be the Fourier transform of the atomic orbital y,(x), so that

xn(¥) = [ d*kexp(ik - x) (k) (8)
and
o, (k) = - (2;)3 [ dxexp(—ik - x) 7,(x). )
Then
An(x — X;) = [ Pkexp[ik - (x — X,)] o,(K) (10)
d
o Yw(x—=X)=[ K exp[ik' - (x — X;)] o, (k). (11)

Substituting (10) and (11) into (4), we obtain:

5,
Foah = f d3xxn,(x - Xj’) e ¥ulx — Xj)

={&@x [Pk [ d>k exp[ik'- (x — X;)] o, (k') 8i exp ik - (x — X;)] o, (k)
= [ Pk P exp[—i(k' X, + k- X)) e () ik, 0, (k) (12)
[ BPxexplitk+k)-x].

Then, since

v

{d*xexplitk + k') - x]=Q2n)® 6(k + k) (13)
we have
(o= [Pty = Xy) o (e X) 4
=Q2n)® [ @ kexp(ik - R) o, (—k) ik, (k) (14)
where
R=X;,-X,. (15)
In a similar way, we obtain the relations:
(Gn’n)v = j‘ dsxXn’(x - Xj’) (x - X])v Xn(x - Xj)
: (16)
=(2n)® | P kexp(ik - R) o, (— k) {B,(k)},
where
{8,003, = (s [ xexp(— ik - 5) x,1,(x) (17
Sn’n = ( d3xXn’(x - X;’) Xn(x - X])
. (18)
=(2n)® [ d*kexp(ik - R) o, (— k) o, (k)
(T =] x5 = X,) (= X,), -2 1,6~ X)
ox, (19)
=(@2n)° [ d*kexp(ik - R) {B, (—k)}, ik,u, (k)
and
= 3 ) — X — X — X — X,
@y = @ X0 (x — X;) (x = X;), (x = X)), 2,(x — X)) 20)

=(2n)* { &kexp(ik - R) {B,,(—k)}, {B,(K)}, -
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Fourier Transforms of Atomic Orbitals

In order to evaluate the Fourier transforms o, (k) and {f,(k)}, defined by (8)
and (17), we make use of the expansion:

exp(—ik-x)=4n Z (=Y julkr) Z 170, @) YOk @1) (21)

m=—1

where j, is a spherical Bessel function of order I (26). k, 0,, and ¢, are the spherical
polar coordinates of the vector k in reciprocal space. If y, is a Slater-type orbital

of the form:
2 nt+1
)= | (=20 Y0, ) @)

then substituting (22) and (21) into (9) and making use of the orthonormality of the
spherical harmonics, we obtain:

AT (i)
n®0)= | 10 il ) e0

Jo = | drrtj, (ke exp(—Cr). (24)
0

where

The integrals J,, have been studied by Geller [29, 30] and Harris [25]. They
can be evaluated directly by inserting the explicit expression for j,(kr) and
integrating, Alternatively, they can be generated by means of the recursion
formulae given by Harris:

2vk
Si1y= (W) Jov-1
2v+2)¢
Jv+2,v= W-’w 1,v
(k2+C2)Ju+1,v+(ﬂ+v)(.u_v_1) Jﬂ—l,v=2.uc']u (25)
k']u,v—l +(ﬂ“ V= 1) Ju—l,vchu

Starting with .

k2 + CZ
and using the recursion relations of Harris (25), we obtain the functions shown

in Table 1. Substitution into (23) yields the following Fourier transforms for the
real Slater-type orbitals up to n=2:

C 5/2 1
“{a] o

_ _C_ 5/2 (3{2—]{2) .
25 = ( 77.') l/g(kz + 4'2)3 (27)

(NP k k
X2p, = —A4ni (;) (kl C2)3 _L .

J1,o= (26)
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Table 1.
Jp= T drrtjkrye™ "
T 0
v
3 48 k?
5 8k? 48K%¢
(k* + % (k> + 2y
1 2k k¢ 8k(502—k?)
(k* + (% K+ 2+
1 2L 2302 —k?) 24 L% - k)
K+ 2+ (k2 +0 (k> + 2y
1 2 3 4 Hn—

In a similar way we can generate the functions defined by Eq. (17)

(Bry),=—i (£>5/2 4k k.
T

&+ k

5/2 k(SCZ—-kZ) ﬁ

o=

V3

I

) e

0

uy

6k, k,

4C7/2
(ﬂzp,)v= o2 {(k2+C2)3 -

(k* + 2y

3

Angular Momentum Projection Operators Acting on Tensor Functions

103

(28)

Before proceeding further with the evaluation of the two-center one-electron
integrals of Eqgs. (14)—(20), it is convenient to notice the following general property
of three-dimensional Fourier transforms: Suppose that we have a function which
can be expressed as a product of a radial part A(k) and an angular part f(6,, @)

Then, from the expansion

‘o0

1
exp(ik-R)=4n 3, 'jkR) 3. Yix(0y 02) Yin(Ok, @r)
!

=0

it follows that

m= -1

D0

[ dkexp(ik - R) A(k) f(6,, 0 = Y, ai(R) O,{f (O, 9r)}

where

a(R)=4ni | dkk?j(kR) A(Kk)
0

and

=0

0, {f (O, &)} = il YOk, @) | dY5 O 0 £ On, 01) -

(29)

(30)

(31)

(32)
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In Eq. (32), 0,{ f(Or, @g)} is just that component of the angular function f{0z, @g)
which transforms under rotations according to the angular momentum quantum
number L In other words, O, is a weak projection operator which annihilates
all of the components of f(fx, ¢g) except that part which corresponds to angular
momentum /. If we have some other means of finding the effect of such a projection
operator on f(fg, @g), then we need not evaluate the integral (32).

Looking at (27) and (28), we can see that the angular functions which occur
in the integrals (14)—(20) are tensor of the form:

N factors
k

kk, ...
fO 0= —"—5—

o wy,...0...1,2,3. (33)

Thus, in our case, (30) takes on the particular form:

kk, ...k
jd%exp(ik-R)A(k)“#’—
R,R,...R,
~ T alR) 0, F2 e
[1=0,2,4,... N(N even)
1=1,3,5... N(Nodd) pv,..0=1,273. (34)

The even values of  enter the sum when N is even, and the odd values enter when
N is odd because if this were not the case, we would not be able to maintain the

identity
R,R,...R, R.R,...R,
_“iN___ = leol (_MW—>

when both sides of the equation are subjected to the inversion operation R=—R.
The series in (34) terminates at N for the following reason: The usual theory of
angular momentum tells us that the maximum value of angular momentum which
can result from coupling / and [' is I+ Since R,/R and R,/R each correspond
to I=1, the maximum value of angular momentum can be contained in the
direct product R,R,/R* is I+ I'=1+1=2. Similarly, when R,R,/R* and R,/R
are coupled to yield R, R, R,/R?, the maximum value of angular momentum which
can be contained in the direct product is 2+ 1 =3. Proceeding in this way, we
find that if N is the rank of the tensor function, then

R, ...R
0,(%):0 for I>N.

Using a table of spherical harmonics, or alternatively, using Lowdin’s projection
operator methods, we can construct the angular functions

R,R,...R,
0’( R )
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Table 2.
(B
R R
O <RI‘RV) _ R;A.R\ é)n
*\R2 )T R? 3
R,R)\ 6,
00( = >= ’
R,R,R,
TR UFEVECHE U
R,R R R,R,R R
O pivy g — ptpRe By _
3( R? ) R® sk MV
R,R,R 3R

0 UEVETE

R,R,R, R,
Ol( T ): T
3R
SROATEC
R,R,R,R, R,R,
TTRE R pFEVETHE U
R,R,R,R, 3R,R,
0 (R#RuRvRa) R* 7R? p=v#o
R | R,R,R,R, R,R,+RR, e
R* 7R 35 HTVEC
R,R,R,R, 6R,R, 3
i iy A a e 2 e
R TRZ T 3% p=v=o
RVRO'
IR% HFEVETH
3R,R, )
O(R#R#RVR,,) TR? p=vea
" R* /] RR,+RR, 2
T TR
6R,R, 2
0 p#Ev#Ec#p
R,R,R,R, 0 p=ve
0p| 1) =0
R 15 UFEV=0
3 u=v=g
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as shown in Table2. For example, looking at a table of spherical harmonics,
we see that

Y, 0~3cos?0—1 33%22_ —1.
Therefore 377 27
1
00 <7 —'1) =0 and 00 (71—2—) = ?

However, we know that

Z7Z YA Z7Z
0°(R2>+02(R2)= R7

and therefore it follows that

o Zz\ z2Z 1
2\ R2/ R? 3

Proceeding in this way, we can construct the angular functions of Table 2.

The Radial Functions of Geller and Harris

From (34) we can see that the one-electron two-center integrals can be expressed
in terms of the angular functions of Table 2 and in terms of the radial integrals:

a(R)=4il | dkk?j(kR) A(K) (35)

where A(k) represents the radial part of the expressions occurring in Eqs. (14)—(20).
For example, combining (14), (27), and (34), we have:

R
Fap20)s = Y. a(R)O, (‘%) (36)
1=1,3
where 2 (@mik) (ik) ( {5\ (—4nik)
wik) (i 2 —4ni

Radial integrals of this type have been studied by Geller [29, 30] and Harris [25].
They introduce the notation:

_ 2% dkK*YjkR)

Whi= = . - 38
W= ey 9
Thus, using Harris’ notation, we can write:
. } &H R,R,R,
(F2pu,2pv)d =2(4(,(,)"? 11_212 , llel',a 270, “‘lkﬁ’“ (39

The radial integrals W}y can be evaluated directly by contour integration.
However, this direct method of evaluating W3/ is extremely tedious. Harris
instead evaluates these integrals by a very elegant procedure using recursion
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relations and using the relation [317:
RS

W0 = Sgraerr ks GR) 0

where k,(x) is a modified spherical Bessel function of order n:

)=

ko(x)= —e™*

ky () = (—L + i)e-x
x X
3

ky(x) = (7+%+;)e"‘ (41)
15 15 6 1\ _,

s(x)—(x— }T+7+?>e

cte.

3
2044,0,)%2 Wl (R)

20444, 2 wikim

2L
B
1 c-C
% S EN
N-N
N-0
0 0-0
1 L] . . 1 -
1 2 3

N
o

Figs. 1 and 2. These figures show the radial functions which are needed for the accurate evaluation

of oscillator strengths in 7—=* transitions, [see Eqgs. (4), (38), and (39)]. The curves were evaluated

using the Slater exponents given by Clementi and Riamondi [28] for nitrogen, carbon and oxygen
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The modified spherical Bessel functions k,(x) obey the recursion relations:

1 d [k,
o= | “)
The radial functions W}/ obey the recursion relations:
G-0) VVifijz I/Vif’i"i— 1 VVilijl,i' (43)

_2_lj‘1 l,j__ 1+1,j 1—1,j+1

( R )sz =W+ Wi . (44)
Starting with (40), one can use (43) and (44) to advance the indices of W}/ and in
this way one obtains the desired function. Harris also discusses a procedure which
can be used to evaluate W/ in the case where {, and {, are almost equal, and (43)
is no longer computationally feasible. Examples of the radial functions are
shown in Figs. 1 and 2.

Tables of One-Electron Two-Center Integrals

Having discussed both the angular and radial parts of the integrals in
Egs. (14)—(20), we are now in a position to evaluate them by a straightforward
application of Egs. (34), (31), (27), and (28). The results, expressed in terms of the

Table 3. Integrals involving the momentum operator

.0
(Frada= [ X (% = Xj) =— 18— X)
Xy

R=X;,-X;
1 R
(Fls,ls)u= - '5 (4€1€2)5/2 I/VZI,’Z1 Tﬂ
—@LG)"” R,
Frozdy=—— 7 —BUE W5 - W)=
’ 213 ' "7 R
— (40,8 R
(Fagaohy= — = —— UG W =3+ D WS+ Wiy
4—1
5 R
(Fls,2p“)v = (2&1)5/2 (242)7/2 Z il VVZ’,’S( 2 ) Ol ( RII;Z V)
1=0,2

5/2 72 4-1 61\
Frpp= 2D o s 5 5

1/-5’ 1=0,2
R,R
.o,( 1‘32”)
RMR‘,RU)

(sz,‘,zm)a=2(4£1Cz)7/21 Z ¢ VVsl,’s ? 01( R
3

=1,
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Table 4. Integrals involving the dipole moment operator

AR TETREED OTEED IWALED &

R
(Groadu =200, L) Wig T8

244,67

(GLS.ZI)y = \/3

2ALL L2 R
(Gasaam _(_Ci)__{mczcl -GSO Wi W -

R
66 Wi -

4-1
a1y =400 Q2L T sw;,-fT}oz(R”R”)

2
1202 R

420,72 20,07 2 (Gl
(GZP,,Zs)vaI=§’Z {5C2W3a —Wga } ( R )

A (R,RR,\ 1
o "5~

R

(Gap2p)o = — 12040, 02)"? {i 2 Wiy

=13

Table 5. Overlap integrals

Sﬂ’n = l—djx Xn’(x - XJ} Xn(x -X }
Sls,ls = %(44’14’2)5/2 Wzo"zl
R
Sisp, = RE) QLY W

“LG)?"

SlsZs 21/

4 5/2
Sk‘zﬁ:(_c_l_@_{nguz W01 3((2+()WDZ

B Wy - WY

252pu 1/3

, s P59/ RUR,
S =IO T W T g (M)

1=9,2

R
(35% Wsl,’al - Wsl,’sz)?ﬂ

angular functions of Table 2 and the radial functions of Harris’ Eq. (38), are given
in Tables 3—8. For the sake of completeness, we have included all of the two-center
one-electron integrals which are of interest for the calculation of optical properties
of molecules. These include matrix elements of the momentum gperator, the

dipole operator, the tensor operator x the quadrupole moment operator,

0
kox,
and the angular momentum operator, and overlap integrals. The matrix elements
were evaluated for Slater-type atomic orbitals up to n=2. Applications will be

reported in another paper.
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Table 6. Integrals involving the operator x, %
0
(T = Experlx — X;) (x = X,), o Xn(x — X))
(5 ’)
(Tlx,ls)uv = _2(4C1€2)5/2 Z lWl ( )
1=0,2
2 s 5 (4 l) (6 l)
(T == GLEI" T BT w70, (R
€ 10,2 R?
2 5/2 1 2 (4 l)
(’1-‘25,25)‘;\': _?(4(1(2) Z ! {15{1{2% 3
1=0,2

61 81
—sra w0 C5)

31 R,R,R
(T, 2,,“>w=4(2c1>5f2<2c2)”2i x s o [P
i=1,3

(T‘Zs 2pu)vo' = 7_ (25 )5/2 (2C2)7/2 1 Z l

1=1,3

51 it ) R R.R
{CZW4§ D _wpls )}0,( T )

4 -1
(o ndes =200, 3, % #3570, (225

1=0,2

6—1
o e[Sk

4
1=0,2,4 R

)

Table 7. Integrals involving the quadrupole moment operator
(Q"'")Il" = [ daxXn' (x - Xj’) (x X; )u (x J)v Xn(x - X;)
(4 h
(le,ls)uv= 8(4€1C2)5/2 Z l Ol R2

1=0,2

8 1(4 l) (6 1)
(Qis,20v = A (AL, )P Z il{Ssz 4 T l }01( ) )
/3 1=0,2 R
8 (4 l)
Q2,29 = 3 (4c1€2)5/2 % i {25(1C2 W:t 4
1=0,2

61 81
S W+ AT )} (

)

(@uanhe =~ 420 0 5., W33
5-1
-6 Z e IW'( )Ol(RnRvRa)}

3
1=1,3 R

—4
(D5, 25, )ve = == 2012 20)? 5,“, -Wid
V3

—6 Y #° l{sczw'(5 l)_mf: ')}o,(_R&R_U)}

3
1=1,3 R

4
(QZpu,va)ue = 2(451 (2)7/2 [5[1,0'5\12 VV30,51 - 6 Z il {5ua %’,’(4 2 )
i=0,2

RR (41
B o T Rl

+36 Y zW’(6 o) z(—_“RvR"R")}

4
1=0,2,4 R
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Table 8. Matrix elements of the angular momentum operator

0 0
(Ln' n)ag = I d3xXn' (x - Xj’) (xq a—x; - xg —6;:> Xn('x - X])

(Ln's,ns)o'g = X]";(Fn's,ns)g - XjQ(Fn’s,ns)cr
(Ln's,Zp,,l)ag = X;”(Fn’s,zl;u)g - ng(Fn’s,Zp“)s
(LZPM)ZPV)"Q= X;(Flpuﬂpv)e - XJ?(FZPPYZPV)“

+ 5ev52pu, 2py T 5G'VS2P;-L72PQ
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